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such that the parametric equation for the second arc becomes
4 ¢
%@y = LR, 0%} @) + | [Ralt ~ 1) cosB(r)
j=r :

+ Ryt — 7) sinB(r)ld7 31

On the third arc, we have

xs=10, (32
hence,
x3@W)=Qt + C3 (33)

If we impose the conditions at the end of the second arc, the
constant of integration

C?=B(t) — Nty (€2

is determined. It follows that
x3(6) =t + B(t) — Dty = () (35)

Similarly, with (31) we obtain

4 t
x2(t) = 'E1Ri j(t)xj2 ) + ait [Ry(t — 7) cosy(7)
Jj= 2

+ Rt — 1) §in7(r)] dr (36)

Imposing the final conditions yields
d , . T
L Ry (D1 + agt Ryl — 7) cosy(r)
j= 2
+ Ryt — 1) siny(n)] dr=¢ (37a)

4 T
LRy, (T} () + ], (Rt = 7) cosytr)
Jj= 2

+ Ryt —7) siny(n)] dr = d (37b)
0T - B(tz) —hth=¢ ' (379

The transition from the second interval to the third one does
not require additional conditions because the integration
constants are determined from the relations

1ibs(tz) =0 (38a)
texs(ty) =$—:% (38b)

Making explicit (19), (21), and (22), we will obtain
o
zl/?[ﬁle”’l sinQ,f, + B,e® cosQt, — B, — S—Z—_( —a’+ Kz)]
1
' o
+ ¢2[ — Bie ~ %! sinQyt; + Bye ~ " cosQyt) — B, — Q_
: 1

(—a%+ KZ)] + ¢2[53 cos(f— Q)t; + B, cos(f + Q)

~B;—Bs— ﬁl‘("2 + Q%)] + Kbg[ﬁs sin(f — Q)1
Q

Yla(de? — K, + aDe ™ — Yra(4? — K, + aBe =T — Y3t
X (40® — K, — £% sindT

+ Y3 (4o? — Ky — £2) costT = 0 (39b)
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YT 4 43T 4 Y3 costT + ¢ sinfT = 0 (39¢)

The relations (39) form an algebraic system with the un-
knowns Y% /YK =2, 3, 4) whose function expressions of ¢,
and T are used in the developments that give the state variables
on the second and third interval of time.

In order to calculate ¢,, ¢,, and T, we have to take into
account the fulfiliment of the condition 0 <¢# <, <T. The
unknowns are the five integration constants that come from
the adjoint system and ¢, £,, and T'. In order to determine the
eight unknowns, relations (37) and (39) are used. The
determination of the time of optimal transfer will be done by
considering all variants (20), among with the one that for T

-gives the smallest positive value is picked up.'In this way, we

obtain the succession of arcs of the optimal trajectory.

The motions with u = £Q, as well as those with tgxs
= ¥»(¢)/¥4(t), are optimal. The foregoing analysis shows that
the optimal trajectory: consists of three arcs, among which
those situated at the extremities are determined by the control
function # = + Q. The intermediate portion corresponds to
the tangent law. We have to note that a complete treatment
that would permit one to calculate the time of the arcs of the
optimal trajectory is possible only by numerical integration.
For the simplified equations of motion of a material point,!
the tangent law gives a constant value for the direction of the
propulsion. Our analysis shows that the motion around the
collinear libration pointe gives a variation in terms of time of
the orientation angle of the propulsion that considerably
complicates the problem. Thus, the determination of the un-
knowns implies the solution of some integral equations and of
nonlinear algebraic systems. :
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Introduction

UCH research has been done in the dynamics of orbital

‘ transfer and rendezvous, but few papers have dealt with
the problem of avoiding an interception in space. Many
military capabilities are being put in satellites and the means of
intercepting them are improving. Some research has been done

~ Presented as Paper 86-2060 of the AIAA/AAS Astrodynamics
Conference in Williamsburg, VA, Aug. 18-20, 1986; received Sept.
10, 1986; revision received July 24, 1987. This paper is declared a
work of the U.S. Government and is not subject to copyright protec-
tion in the United States. )

*Captain, U.S. Air Force; Graduate Student.

tLieutenant Colonel, U.S. Air Force; Assistant Professor. Member
AIAA. ’ '



122 J. GUIDANCE

on optimal interception by Prussing and Heckathorn.! The
problem of avoiding an interception also needs attention. One
way to defeat an interception is to maneuver the attacked
satellite so that it does not come within the lethal radius of the
attacker. However, any orbital maneuver will use up the
satellite’s supply of propellant, shortening its useful life or
leaving it vulnerable to a second attack. All other things being
equal, the evasive maneuver should be as small as possible. The
research described in this Note is directed at this problem.

An algorithm was developed that calculated the smaliest
possible impulsive evasive maneuver under the assumption of
Keplerian dynamics when given -a satellite-state vector, a
threat-state vector, an avoidance radius, and a time at which to
perform an evasive maneuver. This Note describes the results
of the algorithm when applied to a realistic scenario for the
orbital interception of a geosynchronous satellite. Results are
also included that show how the size of the evasive maneuver
changed as the attacker’s orbital parameters changed. All of
these results are presented in greater detail by Burk.?

Mathematical Model

Let us assume that a satellite in a Keplerian orbit is subjected
to a threat that can be described as another body ina Keplerian
orbit and a lethal distance around it. The distarice might
represent the lethal radius of a warhead or the range of a radar.
At a given time the satellite will be within the sphere defined
by the threat’s location and the lethal distance around it.
A maneuver time is specified. The-problem is to find the
smallest velocity change that will result in the satellite staying
outside the threat sphere. This is illustrated in Fig. 1. If the
satellite does not maneuver, it will pierce the threat sphere at B
and arrive at C when the threat arrives at A. Two evasive
trajectories, DE and DF, are shown based on impulsive
maneuvers at D. The sphere is moving with the attacker, and so
the optimal evasion trajectory should be tangent to the sphere
in the attacker’s frame of reference. Also, time of flight is a
variable since the optimal closest approach will not necessarlly
be at the same time as the nominal interception.

Method of Solution

The method of differential corrections developed by
Escobal® was used to find the small-value approximation for
the relationships between changes in velocity at the time of
maneuver and changes in time of flight and in position and
velocity at the time of interception. An iterative algorithm
based on these corrections and incorporating the tangency
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constraint converged on a locally optimal maneuver. To ensure
that the globally optimal solution was found, each problem
was run nine times with different initial guesses. No more than
two locally optimal solutions were ever found. No fewer than
two were found unless the original interception came no closer
to the target than about one-third of the threat radius. Two
locally optimal solutions are probably the most that ever occur.

Optimum Evasive Maneuver for a Standard Interception

A satellite interception scenario to use as standard or typical
was selected in the following way. A satellite in a geosyn-
chronous orbit was chosen as the target of the attack. An
attack by direct ascent from the surface of the Earth was
chosen as a likely near-term threat. The threat was given an
orbit with apogee at some nominal intercept (collision) point.
A launch site in the middle northern latitudes would be
plausible, and so an orbital inclination of 45 deg was chosen.
An apogee velocity of 1 km/s was selected as a round number
that left perigee within the Earth. A threat radius of 300 km
was picked. A maneuver interval of 7000 s was selected because
it was about a quarter of the attacker’s orbital period. The
orbits of the target satellite and attacker were referenced to an
equatorial x-y plane with +z in the direction of north. The
nominal intercept occurred as the target crossed the + x axis in
the +y direction. At intercept the attacker had equal velocity
components in the +y and —z directions.-

The two locally optimal evasive maneuvers for this situation
are shown in Table 1. Solution 1 is the global optimum with a
maneuver impulse of 39.6480 m/s. Solution 2 is a maneuver
generally opposite to the global optimum. It is noteworthy that
the nonzero z components show that some degree of
out-of-plane - maneuvering can be optimal for noncoplanar
intercept geometries.

Variations on the Standard

In order to investigate the sensitivity of maneuver size to the
parameters of the attack, eight parameters of the standard
interception were varied. Table 2 lists the parameters and
shows the limits of variation of each. Table 3 ‘contains the
ldrgest and the smallest maneuvers. that were found as each
parameter was. varied. The lethal radius of the threat and the
time of the maneuver had the strongest influence. Impulse size

Table 1 Locally optimal maneuvers for a standard interception

Solution 1 . Solution 2
Impulse magnitude, m/s 39.6480 39.7024
Xx-component, m/s 39.4977 —39.5928
y-component, m/s —2.5889 1.2375
Z-component, m/s 2.2791 ~2.6762
Closest approach time )
(seconds from nominal intercept) 5.895 ~6.961
Relative position of satellite from
attacker at closest approach, km
X component 299.12 —299.13
y component —12.13 0.50
z component 19.46 —22.83
Fig. 1 Threat sphere and evasive trajectories.
Table 2. Variations made on the standard interception
Parameter varied mnemonic units Low value Increment High value
Sphere radius/SR/km 50 50 1000
Maneuver time before intercept/TM/s 500 500 80000
Attacker speed at intercept/AS, km/s 025 0.25 5
Attacker orbit inclination/Al, deg 0 15 360
Attacker flight path angle/AF, deg 0 15 360
Radial miss distance/RM, km ~250 50 +250
In-track miss distance/IM, km —~250 50 +250
Cross-track miss distance/CM, km —250 50 +250
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Table 3 Extremes of variations on the standard interception

P PL ML PH MH %

SR 50 6.612 - 1000 132.010 1897
™ 80 3.932 500 599.756 15153
AS 475 39.398 025  39.674 0.70
Al 60/300 39.646 180 39.685 0.10
AF 315 39.398 75 40.723 3.36
RM —250 6.615 0 39.648 499
M 250 33.503 0 39.648 18
CM 250 8.981 0 39.648 341

?Key: P =parameter varied (mnemonics correspond to Table 2), PL/
PH = parameter value that resulted in the smallest/largest maneuver (units as in
Table 2), ML/MH =size of maneuver in m/s corresponding to PL/PH,
% = difference between ML and MH expressed as a percentage of ML.

increased linearly as threat radius increased, and increased
approximately exponentially as maneuver interval shrank. One
surprising result was the small effect of variations in the
interceptor’s velocity, which altered the size of the evasive
maneuver by only a few percent. Errors in the radial and
_cross-track directions resulted in nearly linear reductions in the
size of the required maneuver. Errors in in-track miss distance
produced a more gradual drop-off in maneuver size.

Summary and Suggestions for Further Work

A threat sphere moving in a Keplerian orbit was used to
model an attack on a satellite. Defeat of the attack was consid-
ered by changing the satellite’s orbital velocity at a specified
time to avoid penetration of the threat sphere. An algorithm
using a method of differential corrections was developed to find
the minimum-impulse evasive maneuver. A 45 deg inclination
impulsive direct ascent attack on a geosynchronous satellite
with a threat sphere radius of 300 km and a maneuver time
about 2 h before the nominal impact time was used as a refer-
ence case. The optimal evasive maneuver had a velocity change
of 39.648 m/s with a nonzero out-of-plane component. The
sensitivity of this solution to variations in intercept parameters
was also studied. Maneuver time was the most important
parameter, followed by threat sphere radius. In every case no
more than two locally optimal solutions were found.

Further study of orbital evasive maneuvers along the lines
drawn here might include the effects of uncertainty, improve-
ment of accuracy of the model, and consideration of methods
of jointly optimizing evasive maneuver size and other relevant
factors. The algorithm used here takes no account of uncertain-
ties in the data, either in knowledge of the state vectors or in
the precision with which a recommended maneuver can be
made. In reality these uncertainties might be significant. In the
area of improving the fidelity of the model there are three
interesting possibilities: non-Keplerian dynamics, nonimpul-
sive maneuvers, and nonspherical threat volumes (e.g., the ac-
quisition cone of a radar). Perhaps the most important area of
study is the optimization of other things along with impulse
size. Such things as predictability, required attitude changes,
and the return to the mission orbit might be significant factors
in selecting an evasive maneuver. The best maneuver in a given
situation will be determined by considering all of these factors.
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~Method for Stability Analysis of
an Asymmetric Dual-Spin Spacecraft
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Introduction

DUAL-SPIN spacecraft may be approximately modeled

as a gyrostat. Leimanis,! Kane,2 Cochran,’ and
Tsuchiya* have each provided the analytical solution or
nutational stability for the attitude motion of an axisymmetric
or asymmetric gyrostat by use of Euler’s equations. In this
paper, first-order differential equations with variables, the
Euler angles, and the angle of relative rotation are derived
instead of Euler’s equations.’ From the first-order equations,
the nutational stability and the criteria for stable quasiperma-
nent spin are directly determined. The behavior of unstable
attitude motion is investigated with the aid of the energy
integral of the system.

First-Order Equations of Motion

The dual-spin spacecraft S consists of rigid bodies 4 and B
connected by a bearing axis (see Fig. 1). A*, B*, and S*, the
respective mass centers of 4, B, and S, lie on the bearing axis.
The distance between A* and B* is 1. Body A4 is an
asymmetric rotor. Its centroidal principal axis system is
A* - X, X,X,). Body B is an axisymmetric platform. Its axis
of symmetry is aligned with the X;-axis. The (B* — X,Y,Y3)
system is fixed in body B, the orientation of which relative to
(B* — X, X,X;) is specified by the angle «. Bodies A and B and
system S have masses m,, my, and m, respectively. Their
individual centroidal inertia dyadics 4, B, and I are

3 3 3
A=Y Axx;, B=Y, Bxx;, I=Y Ixx )

i=1 i=1 i=1

L=A,+B,, I=A,+By+Pmmg/m(@i=2,3 ()

where x; are unit vectors parallel with axis X; (i = 1, 2, 3).

Establish (S* — Z,Z,Z;), the coordinate system of angular
momentum, with Z,-axis along the angular momentum vector
of system S about S*. Let ¢, d and ¢ be Euler angles of the
centroidal principal axis system ($* — X, X,X;) relative to
(8* ~ Z,Z,Z,) (see Fig. 2). Since there is no external torque,
the rotational angular momentum of the system is constant. It
may be expressed in the form

H = Hcdx, + HsVspx, + Hsdcox, 3)
Here H is the magnitude of H and is a first integral; ¢( ) and
s( ) are defined as cos( ) and sin( ), respectively, for

convenience. According to its definition, H may also be
written as

H=I-w+B -0 @

where @ and w are the angular velocity of B relative to 4 and
of A, respectively, which may be expressed as

Q= Qx, (5a)

w= E wW;X; (Sb)
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