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such that the parametric equation for the second arc becomes
4 f

xf(t) = £ tf/7(0*/('i) + a [*n(f - T) cos/3(r)
y = l JO

\fieaT + \I/2-aT+\l/°3 costT + ^4 sinfT = 0 (39c)

+ Ri4(t - T) sin/3(r)]dT

On the third arc, we have
- ' X5 = !

hence,
C3

(31)

(32)

(33)

If we impose the conditions at the end of the second arc, the
constant of integration

(34)

(35)

is determined. It follows that

xl(t) = G2f + $(t2) - Q2/2 = T(0

Similarly, with (31) we obtain
4 rt

xl(t) = E Rtj(t)xf(t2) + OL [Ri2(t - T) cos7(r)
/-I J ^2

+ Rij(t - T) sin7(r)] dr (36)

Imposing the final conditions yields
4 pT
E R2j(T)x}(t2) +-aj^ [^22a - r) COST(T)

+ .R24(r - r) sin-y(T)] dr = c (37a)

E U4Xnx/ (« + a f r[^42(^ - r) cos7(r)
7 = 1 J ?2

+ #44(7 - T) sin/y(T)] dr = d (37b)

a2r2 = ^ (37c)

The transition from the second interval to the third one does
not require additional conditions because the integration
constants are determined from the relations

W2) = 0 (38a)

(38b)

Making explicit (19), (21), and (22), we will obtain
oF • a 1

[ OL
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(39a)

The relations (39) form an algebraic system with the un-
knowns \l/k/\fi(K = 2, 3, 4) whose function expressions of tl
and Tare used in the developments that give the state variables
on the second and third interval of time.

In order to calculate tl9 t2, and T\ we have to take into
account the fulfillment of the condition 0 < tl < t2 < T. The
unknowns are the five integration constants that come from
the adjoint system and tl912, and T. In order to determine the
eight unknowns, relations (37) and (39) are used. The
determination of the time of optimal transfer will be done by
considering all variants (20), among with the one that for T
gives the smallest positive value is picked up. In this way, we
obtain the succession of arcs of the optimal trajectory.

The motions with u - ±Q, as well as those with tgx5
= ^2(0/^4(0> are optimal. The foregoing analysis shows that
the optimal trajectory consists of three arcs, among which
those situated at the extremities are determined by the control
function «= ±12. The intermediate portion corresponds to
the tangent law. We have to note that a complete treatment
that would permit one to calculate the time of the arcs of the
optimal trajectory is possible only by numerical integration.
For the simplified equations of motion of a material point,1
the tangent law gives a constant value for the direction of the
propulsion. Our analysis shows that the motion around the
collinear libration pointe gives a variation in terms of time of
the orientation angle of the propulsion that considerably
complicates the problem. Thus, the determination of the un-
knowns implies the solution of some integral equations and of
nonlinear algebraic systems.
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Introduction

MUCH research has been done in the dynamics of orbital
transfer and rendezvous, but few papers have dealt with

the problem of avoiding an interception in space. Many
military capabilities are being put in satellites and the means of
intercepting them are improving. Some research has been done
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on optimal interception by Trussing and Heckathorn.1 The
problem of avoiding an interception also needs attention. One
way to defeat an interception is to maneuver the attacked
satellite so that it does not come within the lethal radius of the
attacker. However, any orbital maneuver will use up the
satellite's supply of propellant, shortening its useful life or
leaving it vulnerable to a second attack. All other things being
equal, the evasive maneuver should be as small as possible. The
research described in this Note is directed at this problem.

An algorithm was developed that calculated the smallest
possible impulsive evasive maneuver under the assumption of
Keplerian dynamics when given a satellite-state vector, a
threat-state vector, an avoidance radius, and a time at which to
perform an evasive maneuver. This Note describes the results
of the algorithm when applied to a realistic scenario for the
orbital interception of a geosynchronous satellite. Results are
also included that show how the size of the evasive maneuver
changed as the attacker's orbital parameters changed. All of
these results are presented in greater detail by Burk.2

Mathematical Model
Let us assume that a satellite in a Keplerian orbit is subjected

to a threat that can be described as another body in a Keplerian
orbit and a lethal distance around it. The distance might
represent the lethal radius of a warhead or the range of a radar.
At a given time the satellite will be within the sphere defined
by the threat's location and the lethal distance around it.
A maneuver time is specified. The problem is to find the
smallest velocity change that will result in the satellite staying
outside the threat sphere. This is illustrated in Fig. 1. If the
satellite does not maneuver, it will pierce the threat sphere at B
and arrive at C when the threat arrives at A. Two evasive
trajectories, DE and DF, are shown based on impulsive
maneuvers at D. The sphere is moving with the attacker, and so
the optimal evasion trajectory should be tangent to the sphere
in the attacker's frame of reference. Also, time of flight is a
variable since the optimal closest approach will not necessarily
be at the sanle time as the nominal interception.

Method of Solution
The method of differential corrections developed by

Escobal3 was used to find the small-value approximation for
the relationships between changes in velocity at the time of
maneuver and changes in time of flight and in position and
velocity at the time of interception. An iterative algorithm
based on these corrections and incorporating the tangency

constraint converged on a locally optimal maneuver. To ensure
that the globally optimal solution was found, each problem
was run nine times with different initial guesses. No more than
two locally optimal solutions were ever found. No fewer than
two were found unless the original interception came no closer
to the target than about one-third of the threat radius. Two
locally optimal solutions are probably the most that ever occur.

Optimum Evasive Maneuver for a Standard Interception
A satellite interception scenario to use as standard or typical

was selected in the following way. A satellite in a geosyn-
chronous orbit was chosen as the target of the attack. An
attack by direct ascent from the surface of the Earth was
chosen as a likely near-term threat. The threat was given an
orbit with apogee at some nominal intercept (collision) point.
A launch site in the middle northern latitudes would be
plausible, and so an orbital inclination of 45 deg was chosen.
An apogee velocity of 1 km/s was selected as a round number
that left perigee within the Earth. A threat radius of 300 km
was picked. A maneuver interval of 7000 s was selected because
it was about a quarter of the attacker's orbital period. The
orbits of the target satellite and attacker were referenced to an
equatorial x-y plane with +z in the direction of north. The
nominal intercept occurred as the target crossed the + x axis in
the +7 direction. At intercept the attacker had equal velocity
components in the +y and —z directions.

The two locally optimal evasive maneuvers for this situation
are shown in Table 1. Solution 1 is the global optimum with a
maneuver impulse of 39.6480 m/s. Solution 2 is a maneuver
generally opposite to the global optimum. It is noteworthy that
the nonzero z components show that some degree of
out-of-plane maneuvering can be optimal for noncoplanar
intercept geometries.

Variations oh the Standard
In order to investigate the sensitivity of maneuver size to the

parameters of the attack, eight parameters of the standard
interception were varied. Table 2 lists the parameters and
shows the limits of variation of each. Table 3 contains the
largest and the smallest maneuvers that were found as each
parameter was varied. The lethal radius of the threat and the
time of the maneuver had the strongest influence. Impulse size

Table 1 Locally optimal maneuvers for a standard interception

Solution 1 . Solution 2

Fig. 1 Threat sphere and evasive trajectories.

Impulse magnitude, m/s
x -component, m/s
j>-component, m/s
z -component, m/s

Closest approach time
(seconds from nominal intercept)

Relative position of satellite from
attacker at closest approach, km
x component
y component
z component

39.6480
39.4977

-2.5889
2.2791

5,895

299.12
-12.13

19.46

39.7024
-39.5928

1.2375
-2.6762

-6.961

-299.13
0.50

-22.83

Table 2 Variations made on the standard interception

Parameter varied mnemonic units Low value Increment High value

Sphere radius/SR/km
Maneuver time before intercept/TM/s
Attacker speed at intercept/ AS, km/s
Attacker orbit inclination/ AI, deg
Attacker flight path angle/ AF, deg
Radial miss distance/RM, km
In- track miss distance/IM, km
Cross- track miss distance/CM, km

50
500

0.25
0
0

-250
-250
-250

50
500

0.25
15
15
50
50
50

1000
80000

5
360
360

+ 250
+ 250
+ 250
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Table 3 Extremes of variations on the standard interception

PL ML PH MH

SR
TM
AS
AI
AF
RM
IM
CM

50
80
4.75

60/300
315

-250
250
250

6.612
3.932

39.398
39.646
39.398
6.615

33.503
8.981

1000
500

0.25
180

75
0
0
0

132.010
599.756
39.674
39.685
40.723
39.648
39.648
39.648

1897
15153

0.70
0.10
3.36

499
18

341
aKey: P = parameter varied (mnemonics correspond to Table 2), PL I

PH — parameter value that resulted in the smallest/largest maneuver (units as in
Table 2), ML/MH = size of maneuver in m/s corresponding to PL/PH,
% = difference between ML and MH expressed as a percentage of ML.

increased linearly as threat radius increased, and increased
approximately exponentially as maneuver interval shrank. One
surprising result was the small effect of variations in the
interceptor's velocity, which altered the size of the evasive
maneuver by only a few percent. Errors in the radial and
cross-track directions resulted in nearly linear reductions in the
size of the required maneuver. Errors in in-track miss distance
produced a more gradual drop-off in maneuver size.

Summary and Suggestions for Further Work
A threat sphere moving in a Keplerian orbit was used to

model an attack on a satellite. Defeat of the attack was consid-
ered by changing the satellite's orbital velocity at a specified
time to avoid penetration of the threat sphere. An algorithm
using a method of differential corrections was developed to find
the minimum-impulse evasive maneuver. A 45 deg inclination
impulsive direct ascent attack on a geosynchronous satellite
with a threat sphere radius of 300 km and a maneuver time
about 2 h before the nominal impact time was used as a refer-
ence case. The optimal evasive maneuver had a velocity change
of 39.648 m/s with a nonzero out-of-plane component. The
sensitivity of this solution to variations in intercept parameters
was also studied. Maneuver time was the most important
parameter, followed by threat sphere radius. In every case no
more than twp locally optimal solutions were found.

Further study of orbital evasive maneuvers along the lines
drawn here might include the effects of uncertainty, improve-
ment of accuracy of the model, and consideration of methods
of jointly optimizing evasive maneuver size and other relevant
factors. The algorithm used here takes no account of uncertain-
ties in the data, either in knowledge of the state vectors or in
the precision with which a recommended maneuver can be
made. In reality these uncertainties might be significant. In the
area of improving the fidelity of the model there are three
interesting possibilities: non-Keplerian dynamics, nonimpul-
sive maneuvers, and nonspherical threat volumes (e.g., the ac-
quisition cone of a radar). Perhaps the most important area of
study is the optimization of other things along with impulse
size. Such things as predictability, required attitude changes,
and the return to the mission orbit might be significant factors
in selecting an evasive maneuver. The best maneuver in a given
situation will be determined by considering all of these factors.
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Introduction

A DUAL-SPIN spacecraft may be approximately modeled
as a gyrostat. Leimanis,1 Kane,2 Cochran,3 and

Tsuchiya4 have each provided the analytical solution or
nutational stability for the attitude motion of an axisymmetric
or asymmetric gyrostat by use of Euler's equations. In this
paper, first-order differential equations with variables, the
Euler angles, and the angle of relative rotation are derived
instead of Euler's equations.5 From the first-order equations,
the nutational stability and the criteria for stable quasiperma-
nent spin are directly determined. The behavior of unstable
attitude motion is investigated with the aid of the energy
integral of the system.

First-Order Equations of Motion
The dual-spin spacecraft S consists of rigid bodies A and B

connected by a bearing axis (see Fig. 1).A*,B*, and S*, the
respective mass centers of A , B, and S, lie on the bearing axis.
The distance between A* and B* is 1. Body A is an
asymmetric rotor. Its centroidal principal axis system is
(A * — X1X2X3). Body B is an axisymmetric platform. Its axis
of symmetry is aligned with the Xraxis. The (B* -X{Y2 Y3)
system is fixed in body B, the orientation of which relative to
(B * — X1X2X3) is specified by the angle a. Bodies A and B and
system S have masses mA9 mB, and m, respectively. Their
individual centroidal inertia dyadics A , B, and / are

= ^ AiXixi9 7= (1)

/! = Al + B19 // = AI + B3 + l2mAmB/m (i = 2, 3) (2)

where xf are unit vectors parallel with axis X{ (i = 1, 2, 3).
Establish (S* — Z1Z2Z3), the coordinate system of angular

momentum, with Zraxis along the angular momentum vector
of system 5 about S*. Let ^, d and <p be Euler angles of the
centroidal principal axis system (S * — X1X2X3) relative to
(S* — ZjZ2Z3) (see Fig. 2). Since there is no external torque,
the rotational angular momentum of the system is constant. It
may be expressed in the form

H = l + Hs&s<px2 (3)

Here H is the magnitude of H and is a first integral; c( ) and
s( ) are defined as cos( ) and sin( ), respectively, for
convenience. According to its definition, H may also be
written as

(4)

where Q and <o are the angular velocity of B relative to A and
of A, respectively, which may be expressed as

(5a)

(5b)
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